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Fractal scaling—a power-law behavior of the number of boxes needed to tile a given network with respect
to the lateral size of the box—is studied. We introduce a box-covering algorithm that is a modified version of
the original algorithm introduced by Song et al. �Nature �London� 433, 392 �2005��; this algorithm enables
easy implementation. Fractal networks are viewed as comprising a skeleton and shortcuts. The skeleton,
embedded underneath the original network, is a special type of spanning tree based on the edge betweenness
centrality; it provides a scaffold for the fractality of the network. When the skeleton is regarded as a branching
tree, it exhibits a plateau in the mean branching number as a function of the distance from a root. For nonfractal
networks, on the other hand, the mean branching number decays to zero without forming a plateau. Based on
these observations, we construct a fractal network model by combining a random branching tree and local
shortcuts. The scaffold branching tree can be either critical or supercritical, depending on the small worldness
of a given network. For the network constructed from the critical �supercritical� branching tree, the average
number of vertices within a given box grows with the lateral size of the box according to a power-law �an
exponential� form in the cluster-growing method. The critical and supercritical skeletons are observed in
protein interaction networks and the World Wide Web, respectively. The distribution of box masses, i.e., the
number of vertices within each box, follows a power law Pm�M��M−�. The exponent � depends on the box
lateral size �B. For small values of �B, � is equal to the degree exponent � of a given scale-free network,
whereas � approaches the exponent �=� / ��−1� as �B increases, which is the exponent of the cluster-size
distribution of the random branching tree. Finally, we study the perimeter H� of a given box �, i.e., the number
of edges connected to different boxes from a given box � as a function of the box mass MB,�. It is obtained that
the average perimeter over the boxes with box mass MB is likely to scale as �H�MB���MB, irrespective of the
box size �B.
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I. INTRODUCTION

Fractal scaling recently observed �1� in real-world scale-
free �SF� networks such as the World Wide Web �WWW�
�2�, metabolic network of Escherichia coli and other micro-
organisms �3�, and protein interaction network of Homo sa-
piens �4� has opened a new perspective in the study of net-
works. SF networks �5� are those that exhibit a power-law
degree distribution Pd�k��k−�. Degree k is the number of
edges connected to a given vertex. Fractal scaling implies a
power-law relationship between the minimum number of
boxes NB��B� needed to tile the entire network and the lateral
size of the boxes �B, i.e.,

NB��B� � �B
−dB, �1�

where dB is the fractal dimension �6�. This power-law scaling
implies that the average number of vertices �MB��B�� within
a box of lateral box size �B scales according to a power law
as

�MB��B�� � �B
dB. �2�

Here, the relation of system size N�NB��B��MB��B�� is
used. This counting method is called the box-covering
method. At a glance, the power-law fractal scaling �1� is not
consistent with the notion of small worldness �SW� of SF

networks. SW implies that the average number of vertices
within a distance �C from a vertex scales as

�MC��C�� � e�C/�0, �3�

where �0 is a constant. This counting method is called the
cluster-growing method. Here, subscripts B and C represent
the box-covering and cluster-growing methods, respectively.
The number of vertices M within a box is referred to as the
box mass. This contradiction can be resolved by the fact that
a vertex is �can be� counted only once �more than once� in
the box-covering method �in the cluster-growing method�.

Recently, it was suggested that the fractal scaling origi-
nates from the disassortative correlation between two neigh-
boring degrees �7� or the repulsion between hubs �8�. More-
over, we showed �9� that the fractal network contains the
fractal skeleton �10� underneath it; this skeleton is a special
type of spanning tree, formed by edges with the highest be-
tweenness centralities �11,12� or loads �13�. The remaining
edges in the network are referred to as shortcuts that contrib-
ute to loop formation. The skeleton of a SF network also
follows a power-law degree distribution, where its degree
exponent can differ slightly from that of the original network
�10�. For fractal networks that follow fractal scaling �1�, we
have shown �9� that each of their skeletons exhibits fractal
scaling similar to that of the original network. The number of
boxes needed to cover the original network is almost identi-
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cal to that needed to cover the skeleton. Thus, since the skel-
eton is a simple tree structure, it is more useful than the
original network for studying the origin of the fractality.

It was shown �9� that the skeleton of the fractal network
exhibits a nondying branching structure, referred to as a per-
sistent branching structure hereafter. A skeleton can be con-
sidered as a tree generated in a branching process �14� start-
ing from the root vertex. This mapping can be applied to any
tree. If a branching process occurs in an uncorrelated man-
ner, the branching tree obtained from it exhibits a plateau,
albeit fluctuating, in the mean branching number function
n̄�d�, which is defined as the average number of offsprings
created by vertices at a distance d from the root. Actually, the
plateau is formed when n̄�d� is independent of d; this is
denoted as n̄ for future discussions. The branching tree struc-
ture obtained from the random branching process is known
to be a fractal for the critical case �15,16�, where the mean
branching rate is �n�=1. Here, �n� is defined as

�n� � 	
n=0

�

nbn, �4�

where bn is the probability that a vertex will produce n off-
springs in each step. Thus, �n�= n̄ for the random branching
tree. The fractal dimension of the SF branching tree gener-
ated with branching probability bn�n−� is given by �15–17�

dB = 
�� − 1�/�� − 2� for 2 � � � 3,

2 for � � 3.
�5�

Thus, the presence of the skeleton as the critical branching
tree served as a scaffold for the fractality of the fractal net-
work. Then, the original fractal network is a dressed struc-
ture to the skeleton with local shortcuts; the number of short-
cuts is kept minimal in order to ensure fractality. This idea is
demonstrated by observing that the number of boxes in the
fractal scaling �1� for an original fractal network is similar to
that of its skeleton �9�. When �n��1, we will show that a
supercritical branching tree is also a fractal from the perspec-
tive of the fractal scaling �1�, although exponential relation
in the average box mass �3� holds in the cluster-growing
method. The supercritical branching tree also exhibits a pla-
teau in n̄�d�. Based on these observations, we define a net-
work to be a fractal if �i� it exhibits a power-law scaling Eq.
�1� in the box-covering method and �ii� its skeleton is also a
fractal with the persistent branching structure, i.e., a plateau
exists in the mean branching number function n̄�d�.

Based on these findings, we introduced a fractal network
model by incorporating the random critical branching tree
and local shortcuts �9�. In this paper, we will show that the
model can also be generalized for the supercritical branching
tree, thereby facilitating a better understanding of fractal net-
works. For example, the model based on the supercritical
branching tree can explain the subtle coexistence of SW and
fractality as observed in the WWW.

Due to the heterogeneity of the degree distribution in the
SF networks, the distribution of box masses is also non-
trivial. It exhibits a power-law tail with exponent �,

Pm�MB� � MB
−�, �6�

in the box-covering method, whereas it exhibits a peak at a
characteristic mass in the cluster-growing method. In this
paper, we perform a detailed analysis of the real-world frac-
tal network as well as the fractal network model, thereby
showing that the box-mass distribution in the box-covering
method for the fractal network can be explained by the
branching dynamics. The exponent � of the box mass distri-
bution is related to the exponent � that describes the size
distribution of random branching trees �14�. In particular, for
the critical SF branching tree, � is known to be �16–18�

� = 
�/�� − 1� for 2 � � � 3,

3/2 for � � 3.
�7�

The same value of � can be derived for the supercritical SF
branching tree; however, the power-law scaling behavior is
limited to a finite characteristic size depending on �n� and �
�19�. Thus, the cluster-size distribution follows a power law
for both the critical branching tree and the supercritical
branching tree up to the characteristic size.

In the first part of this paper, we present the fractal prop-
erty of real-world networks and the model of the fractal net-
work in detail as well as a further analysis of our previous
work �9�. Initially, in Sec. II we introduce a modified version
of the box-covering method employed in this paper, follow-
ing which we present the fractal scaling �Sec. III� and the
mean branching number analysis �Sec. IV� for an extended
list of complex networks, real-world and model networks. In
the latter part, we provide a general description of a model of
fractal SF networks including the supercritical branching tree
and study its property in detail in Sec. V. In Sec. VI, we
examine the average box mass and the box mass distribution
for the fractal networks in the box-covering and cluster-
growing methods. The average perimeter of a box as a func-
tion of the box mass is studied in Sec. VII. The summary
follows in Sec. VIII.

II. THE BOX-COVERING METHOD

The fundamental relation of fractal scaling �1� is based on
the procedure referred to as the box-covering method �1� that
calculates the number of boxes NB needed to cover the entire
network with boxes of lateral size �B. This is analogous to
the box-counting method normally used in fractal geometry
�6�. Song et al. �1� introduced a new definition of the box
applicable to complex networks such that the maximum
separation between any pair of vertices within each box is
less than �S. However, this particular definition has proved to
be inessential for fractal scaling. Since �B ��S� can be re-
garded as the radius �diameter� of a box, a simple relation
�S=2�B+1 would follow. This relation, however, turns out to
be only approximate, and more understanding of the relation-
ship is needed. Throughout this study, we utilize a different
version of the box-covering method introduced here; this
method involves sequential steps of box covering, thereby
providing an easy implementation:

�i� Select a vertex randomly at each step; this vertex
serves as a seed.
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�ii� Search the network by distance �B from the seed and
assign newly burned vertices to the new box. If no new ver-
tex is found, do nothing.

�iii� Repeat �i� and �ii� until all vertices are assigned to
their respective boxes.

The above method is schematically illustrated in Fig. 1. It
should be noted that vertices can be disconnected within a
box, but connected through a vertex �or vertices� in a differ-
ent box �or boxes� as in the case of box 2 as shown in Fig. 1.
On the other hand, if we construct a box with only connected
vertices, the power-law behavior Eq. �1� is not observed. It is
not obvious whether such behavior is intrinsic or algorithm
dependent. A different Monte Carlo realization of this proce-
dure ��i�–�iii�� yields a different number of boxes for cover-
ing the network. In this study, for simplicity, we choose the
smallest number of boxes among all the trials. To obtain the
power-law behavior of the fractal scaling, we needed at most
O�10� Monte Carlo trials for all fractal networks. Although
this algorithm provides equivalent fractal dimension dB to
the one introduced by Song et al. �1�, it is easier to imple-
ment. However, the algorithm in Ref. �1� can generate
smaller number of boxes needed to tile a given network com-
pared with ours. In Fig. 2, we compare the two box-covering
methods applied to the WWW, demonstrating that the same
fractal dimension dB is obtained. It should be noted that the
box number NB we employ is not the minimum number
among all the possible tiling configurations. Finding the ac-
tual minimum number over all configurations is a challeng-
ing task, which could not be reached by the Monte Carlo
method. However, in this paper, we focus on the problem of
the fractal scaling within the framework of the box-covering
algorithm introduced above.

III. FRACTAL SCALING ANALYSIS

We present fractal scaling analysis for real-world net-
works, which are listed in the left column of Fig. 3. We first

examine fractal networks such as �a� the World Wide Web,
�b� the metabolic network of E. coli, �c� protein interaction
network �PIN� of H. sapiens, and �d� of S. cerevisiae �20�.
Next, nonfractal networks such as �e� the actor network �21�,
�f� coauthorship network �22�, �g� Internet at the autonomous
system �AS� level �23�, �h� Internet at the router level �24�,
and �i� power grid of the USA �25� are studied. The charac-
teristics of these networks are listed in Table I. Note that in
the previous study by Song et al., the protein interaction
network of S. cerevisiae was classified as a nonfractal net-
work. In this work, we use a different dataset �20� of high-
confidence protein interactions, for which the PIN is a fractal
network.

For the fractal networks �a�–�d�, the original network and
its skeleton exhibit the same fractal scaling behavior, and the
respective statistics of the numbers of boxes needed to cover
them are almost identical as shown in the left-hand column
of Figs. 3�a�–3�d�. The fractal dimensions for these networks
are measured to be �4.10±0.12, 3.53±0.12, 2.28±0.11, and
2.01±0.15 for �a� the WWW, �b� the metabolic network, �c�
PIN of human, and �d� that of yeast, respectively. A power-
law behavior is not observed for nonfractal networks, in
which NB��B� decays faster than any power law. We also
study the fractal scaling for a random spanning tree of each
network, which is constructed from edges that are randomly
selected from the original network to form a tree. Since
edges are selected randomly, the degree distribution of the
original network is conserved in the random spanning tree.
The random spanning tree is fractal irrespective of the frac-
tality of the original networks; this follows from the perco-
lation theory �26,27�. Thus, the random spanning tree is ex-
pected to follow a power law asymptotically in the fractal
scaling, even though the numerical data for some examples
may not show the power-law behavior clearly due to the
finite-size effect. The fractal dimensions for the random
spanning trees measured in asymptotic the regime are
�3.76±0.06 for �a�, 3.94±0.16 for �b�, 2.24±0.18 for �c�,
1.84±0.04 for �d�, 2.91±0.03 for �e�, 2.68±0.07 for �f�,
2.76±0.09 for �g�, 3.37±0.04 for �h�, and 2.44±0.07 for �i�.

FIG. 1. �Color online� Schematic illustration of the box-
covering algorithm introduced in this work. Vertices are selected
randomly, for example, from vertex 1 to 4 successively. Vertices
within distance �B=1 from vertex 1 are assigned to a box repre-
sented by a solid �red� circle. Vertices from vertex 2, not yet as-
signed to their respective box, are represented by a dashed-dotted-
dotted �black� closed curve, vertices from vertex 3 are represented
by a dashed-dotted �green� circle, and vertices from vertex 4 are
represented by dashed �blue� ellipse.

FIG. 2. �Color online� Comparison of the box-covering methods
introduced by Song et al. �1� ��� and in this paper ��� for the
WWW. The results obtained from the two box-covering methods
applied to the WWW are plotted here. The two methods yield the
same fractal dimension dB�4.1.
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FIG. 3. �Color online� Fractal scaling analysis �left-hand column� and mean branching number �right-hand column� of real-world
networks including fractal �a�–�d� and nonfractal �e�–�i� networks. For each network, the original network ���, the skeleton ���, and a
random spanning tree ��� are studied. In �a�–�d�, the straight lines, drawn for guidance, have slopes of −4.10, −3.53, −2.28, and −2.01,
respectively, for the original networks. Those for the random spanning trees have slopes of −3.76, −3.94, −2.24, and −1.84. In �e�–�h�, the
fits to the exponential function for the original network and to a power-law function for the random spanning tree are shown. In the
right-hand panels �a��–�i��, the horizontal line at 1 is drawn for reference.
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For nonfractal networks, the box number NB does not fol-
low a power law with respect to the box lateral size �B. The
statistics of box number of skeletons differ significantly from
those of their original network; however, there are some ex-
ceptions in our examination. For the Internet at the AS level

�Fig. 3�g��, NB for the original network and skeleton exhibits
similar behavior; however, they do not follow a power law.
On the other hand, in the power grid �Fig. 3�i��, the fractal
scalings of the original network and the skeleton exhibit the
same power-law exponent; however, the box numbers for the

FIG. 4. �Color online� Fractal scaling analysis �a�–�e� and mean branching number �a��–�e�� of the SF network models. The symbols used
are similar to those in Fig. 3 except in �d�. The different symbols in �d� represent different parameters in the model. Red circle, blue square,
and green diamond symbols represent generations m=1, 2, and 3 of the model, respectively. In �a� and �c�, the exponential fit for the original
network and a power-law fit for the random spanning tree are shown. For �b� and �d�, which are tree networks, the exponential fit is shown.
In �e�, the exponential fit for the original network is shown. Note that in �e�, the box numbers for the original network, the skeleton, and the
random spanning tree all overlap. In panels �a��–�e��, a horizontal line at 1 is drawn for reference.

TABLE I. Properties of real-world networks studied in this work. For each network, the number of
vertices N, the average degree �k�, the assortativity mixing index r, the average separation �d� of all pairs of
vertices, and the maximum separation dmax among all pairs of vertices are tabulated.

Name N �k� r �d� dmax Category

World Wide Web 325729 6.7 −0.05 7.2 46 Fractal and SW

Metabolic network of E. coli 2859 4.8 −0.16 4.7 18 Fractal and SW

PIN of H. sapiens 563 3.1 −0.14 6.9 21 Fractal but not SW

PIN of S. cerevisiae 741 4.7 −0.41 10.8 27 Fractal but not SW

Actor network 374511 80.2 −0.22 3.7 Nonfractal and SW

Coauthorship network �cond-mat� 13861 6.4 −0.16 6.6 18 Nonfractal and SW

Internet at the AS level 16644 4.3 −0.20 3.7 10 Nonfractal and SW

Router network 284805 3.2 −0.01 8.8 30 Nonfractal and SW

Power grid of the USA 4941 4.9 −0.06 8.5 17 Undetermined and SW
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original network and the skeleton differ significantly. Al-
though the fractal scaling exhibits a power-law behavior, this
fractality is not obvious, because the network size is too
small for checking if a plateau is intrinsically formed in n̄�d�.
Thus, the fractality cannot be classified.

Next, we examine fractal scaling in the following network
models: �a� the Barabási-Albert model with the degree of
incident vertex m=2 �5�, �b� Barabási-Albert model tree with
m=1, �c� static model �13�, �d� geometric growth model �28�,
and �e� deterministic hierarchical model �29� in Fig. 4. The
network models considered do not obey the power-law frac-
tal scaling; therefore, they are not fractals.

IV. MEAN BRANCHING NUMBER ANALYSIS

We present the mean branching number �MBN� analysis
for the skeleton and random spanning trees of each network
considered. We define the MBN function n̄�d� as the mean
number of offsprings of each vertex at distance d from the
root in a branching tree. For the fractal networks �Figs.
3�a’�–3�d’��, both the skeleton and the random spanning tree
exhibit a plateau in MBN, a signature of a persistent branch-
ing structure. For random spanning trees, the location of the
plateau is distinctly obtained as n̄�1. With regard to the
skeletons, while the plateaus in MBN of the protein interac-
tion networks �Figs. 3�c’�–3�d’�� appear to be located around
n̄�1, they cannot be located clearly for the WWW and
metabolic network due to large fluctuations �Figs. 3�a’�–
3�b’��. Such fluctuations may originate due to various factors
such as the finite-size effect and the artificial choice of the
root of the branching tree. The dynamic origin of the forma-
tion of real-world networks may well be more complicated
than the purely random branching dynamics: Thus, nontrivial
correlations may exist. Although the location of the plateau
in MBN cannot be clearly determined in some cases, its pres-
ence is a distinct feature of the fractal networks and is absent
in nonfractal networks.

For nonfractal networks, the MBN of the skeleton decays
to zero without forming a plateau �Figs. 3�e’�–3�h’��. This is
because the skeleton of each nonfractal SF network belongs
to the class of “causal” trees �30�, where vertices closer to
the root are likely to have larger degrees. In such structures,
MBN decreases steadily with the distance from the root;
therefore, a plateau cannot be formed. This absence of a
plateau in MBN is also observed in the skeletons of the net-
work models shown in Fig. 4. Note that even for nonfractal
networks, the random spanning trees exhibit plateaus at n̄
�1, confirming their fractality independent of the underlying
original network structure.

Although the fractal skeleton provides a scaffold for frac-
tality in fractal networks, the manner in which the shortcuts
are placed in the network is also important for preserving the
fractality. With regard to this, the previous result of the
length distribution of shortcuts �10� is important. It is known
that two types of shortcut length distributions exist �10�. In
the first type, the shortcut length distribution decays all the
way with respect to the shortcut length. In the other type, the
shortcut length distribution exhibits a peak at a finite length,
which is comparable to the average separation of all pairs of

vertices on each skeleton; this is indicated by an arrow for
each network in Fig. 5. Thus, in the former case, the short-
cuts connecting different branches of the skeleton are rare;
however, their contribution is considerable in the latter case.
In the latter case, the network will be globally interwoven
and loses the fractality as in the case of random SF networks.
Indeed, we have found that the fractal networks exhibit the

FIG. 5. �Color online� Length distribution of shortcuts. The
length of a shortcut is defined as the shortest distance along the
skeleton between the two vertices connected by the shortcut. The
arrows indicate the diameter of the skeleton of each network. Here,
ns�d� and nT are the number of shortcuts with length d and the total
number of shortcuts, respectively.
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former behavior �Figs. 5�a�–5�d��, while the nonfractal net-
works exhibit the latter �Figs. 5�e�–5�j��. This indicates that
the shortcuts in the fractal networks are mainly local. For the
case of �g�, even though the shortcut-length distribution of
the Internet at the AS level exhibits a peak for the dataset of
year 2004, the peak locates at a rather short distance. Also
such a peak does not appear in the dataset of year 2000. So
the Internet may be categorized into the first category. Clas-
sification of SF networks according to such patterns appears
to be in agreement with that based on the load exponent
�10,31�. Note that the former-type networks have the load
exponent ��2.0, but the latter-type networks have ��2.2.
Fractal networks belong to the former type, however, all net-
works belonging to the former type are not always fractal,
because the causal-tree network has also �=2.0, but it is not
fractal. The Internet at the AS level and the BA tree are good
such examples.

V. FRACTAL NETWORK MODEL

The observation of a plateau in the MBN for the skeleton
of the fractal networks prompted the construction of a fractal

network model based on a random branching tree. We con-
struct the model by reversing the steps, followed thus far to
reveal the fractality. We first construct a branching tree in
which the branching proceeds stochastically with a pre-
scribed branching probability bn. We choose bn to follow a
power law with respect to n in order to generate a SF net-
work. Then, the branching tree is dressed with local shortcuts
as well as global ones. The global connection is introduced
to observe the crossover from fractal to nonfractal behavior.
The frequency of global shortcuts is an important parameter
of the model. More specifically, we consider the branching
probability bn, i.e., the probability to generate n offsprings in
each branching step, as

bn =
1

Z
n−� �� � 2� �8�

for n	1, and

FIG. 6. �Color� Snapshots of the fractal network models. �a� A critical branching tree with �=2.3 and N=164 created in step �i�. �b� A
network created by adding local shortcuts �blue� following the rule �ii� to the branching tree in �a�. Parameter p=0.5 is used. This network
is still fractal. �c� A network created by adding global shortcuts �red� following the rule �iii� to the network in �b�. Parameter q=0.02 is used.
This network is no longer fractal, but small world. �d� A supercritical branching tree with mean branching number �n�=2, which is fractal
as well as small world. �e� A dressed network to network �d� by local shortcuts �blue� generated with p=0.5. The network is fractal as well
as small world. �f� A network created by adding global shortcuts �red� to the network in �e�. q=0.02 is used. In �a�–�f�, the colors of each
vertex represent distinct generations from the root.
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b0 = 1 − 	
n=1

�

bn �9�

for n=0. Then, the resulting tree network is a SF network
with the degree exponent �. In order to generate a critical
branching tree, the normalization constant Z is set to be Z
=
��−1�, where 
�x� is the Riemann zeta function, which
follows from the criticality condition �n�=	nnbn=1. We can
also generate a supercritical branching tree by setting Z
=
��−1� / �n� with �n��1.

After we generate a branching tree, we dress it with short-
cuts by increasing the degree of each vertex by a factor p and
establishing the available connections between vertices. This
can be achieved either in a local or global manner. An addi-
tional parameter q is introduced to describe the frequency of
global shortcuts in the network. The creation rule of the frac-
tal network model is described as follows:

�i� We start with a seed vertex from which n offsprings are
stochastically generated with probability bn �n=0, . . . ,N
−1�. Each offspring then generates n branches with probabil-
ity bn. This process is repeated until we obtain a network of
desired size N. If the growth of the tree stops before attaining
size N, we restart the branching procedure.

�ii� Degree ki of each vertex i is increased by a factor p
such that vertex i obtains additional pki stubs for forming
edges. From these stubs, qpki stubs are assigned to global
shortcuts, while the remaining �1−q�pki stubs are assigned to
local shortcuts. In order to establish local shortcuts, we
search vertices from the root. A vertex i that has at least one
stub for local shortcuts is selected. Then, its connection part-
ner is selected from the closest vertices from the vertex i to a
vertex j, having available stubs for local shortcuts and not
yet connected to i, to form an edge between i and j. This
process is repeated until all the stubs for local shortcuts are
linked.

�iii� Next, we choose two vertices i and j randomly, each
of which has at least one stub for global shortcuts. We then
connect them to form an edge if they are not already con-
nected. This process is repeated until all stubs for global
shortcuts are linked. This step is similar to the process used
in the configuration model �32�.

Network configurations obtained by the model with �
=2.3 and N=164 are shown in Fig. 6. A critical branching
tree with �n�=1 is shown in Fig. 6�a�; this tree is dressed by
local shortcuts �Fig. 6�b�� generated with p=0.5 and q=0
and both local and global shortcuts �Fig. 6�c�� with p=0.5
and q=0.02. A supercritical branching tree with �n�=2 is
shown in Fig. 6�d�; this tree is dressed by both local and
global shortcuts generated with parameters p=0.5 and q
=0.02 in Figs. 6�e� and 6�f�, respectively.

We examine the fractal scaling in the network model and
the MBN for its skeleton. In the case of a network generated
from a critical branching tree �with �=2.3 and N�3�105�
and dressed only by local shortcuts �with p=0.5 and q=0�,
76% of all edges of the original branching tree are main-
tained in the skeleton. The branching tree and the dressed
network exhibit fractal scalings with the same fractal expo-
nent dB�3.2 �Fig. 7�a��. This value appears to differ from

the theoretical value �4.3 estimated from the formula �5�.
However, we notice that the measured value of the degree
exponent of the dressed network is rather close to �=2.4,
although the branching tree is generated with parameter �
=2.3. This deviation roots from the stochastic process of
dressing the branching tree by local edges. Thus, the ex-
pected value is dB=3.5. Therefore, the numerical deviation
can be explained. The MBN of the skeleton of the dressed
network displays a plateau around 1 �Fig. 7�b��. Moreover,
when we introduce 1% of global shortcuts �p=0.5 and q
=0.01� to the critical branching tree, the box number NB��B�
decays faster than any power law for large values of �B �Fig.
7�a��; thus fractality is lost. Accordingly, in this case, the
MBN of the skeleton decays to zero without a plateau �Fig.
7�b��.The critical value qc above which the network becomes
nonfractal depends on the degree exponent �, system size N,
and number of shortcuts p. A more detailed analysis on this
crossover behavior will be presented elsewhere �33�.

The same analysis is performed for the model based on
the supercritical branching tree with �n�=2 �Fig. 8�. This tree
with �=2.3 displays a power-law fractal scaling with fractal
exponent dB�4.2 �Fig. 8�a��; however, its MBN fluctuates
heavily on and off about the expected value n̄=2, while ex-
hibiting persistent branching �Fig. 8�b��. Such a highly fluc-
tuating MBN is similar to that observed in the skeleton of the
WWW or the metabolic network �Figs. 3�a’�–3�b’��. When
dressed only by local shortcuts �p=0.5 and q=0�, the dressed
network still exhibits a power-law fractal scaling �Fig. 8�a��.
The MBN of its skeleton still exhibits large fluctuations �Fig.
8�b��; however, its mean n̄ decreases from 2. With 1% of
global shortcuts �q=0.01�, the fractal scaling exhibits a
power-law behavior but with an exponential cutoff �Fig.
8�c��. Interestingly, the MBN of its skeleton displays a pla-
teau located around 1 with reduced fluctuations �Fig. 8�d��.
When we further increase the number of global shortcuts to
2% �q=0.02�, the MBN of the skeleton decays without a
plateau, and the network is no longer a fractal �Figs. 8�c� and
8�d��.

The fractal network model studied here is a generalization
of the previous model �9� generated by including the super-
critical branching case. Using this model, we can reproduce

FIG. 7. �Color online� Fractal scaling analysis �a� and mean
branching number �b� for the fractal models based on the critical
branching tree with only local shortcuts with p=0.5 and q=0 ���,
and with 1% of global shortcuts with p=0.5 and q=0.01 ���. The
bare critical branching tree is represented by ���. The solid line in
�a� is guideline with a slope of –3.2. The measured degree exponent
is ��2.4 and system size is N=3�105.
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the highly fluctuating behavior in the MBN observed in the
WWW as well as the fractal scaling. We will also show that
this generalization of the supercritical branching facilitates a
better understanding of how the SW and fractal scaling co-
exist and do not contradict each other in such systems. In the
following, we investigate the properties of the fractal net-
work using the fractal network model as well as the real-
world fractal networks.

VI. SMALL WORLDNESS AND BOX MASS
DISTRIBUTION

In this section, we study the average box mass �M���� as
a function of box size �. The box mass is measured using
two methods, the cluster-growing method and the box-
covering method �1�. In the cluster-growing method, the box
mass is defined as the number of vertices at a distance not
greater than �C from a given vertex. Note that in the cluster-
growing method, a vertex can be counted by more than one
box, whereas in the box-covering method, it is counted only
once. The cluster-growing method provides information on
the SW of the network. The average box mass for the critical
branching tree grows with distance �C, according to a power
law with the exponent dB,

�MC��C�� � �C
dB, �10�

where dB is defined in Eq. �5�; this implies that the critical
branching tree is a fractal. For the supercritical branching
tree, the average mass grows exponentially with increase in
distance �C,

�MC��C�� � �n��C. �11�

This relation is equivalent to Eq. �3�, thereby suggesting that
the supercritical branching tree is a small-world network. On
the other hand, the average box mass in the box-covering
method is determined by the fractality. Since both the critical
and supercritical branching trees are fractals, their box mass
increases according to a power law. Thus, the analysis of the
average box mass in the two methods will provide an insight
into the interplay between SW and fractality.

We also consider the distribution of box masses Pm�M�
for each method. It is known �1� that in the cluster-growing
method, the box mass distribution exhibits a peak at a char-
acteristic mass, while it exhibits a fat tail without a peak in
the box-covering method. However, the origin of the power-
law behavior of the box mass distribution for the fractal net-
works has not been understood clearly. Here, we present a
detailed analysis of the box mass distribution, showing that
the exponent of the power-law behavior depends on the lat-
eral size of the box. When the lateral size of the box is large,
the exponent of the box mass distribution can be understood
from the perspective of branching dynamics.

A. Real-world fractal networks

We first examine the average box mass �MC��C�� in the
cluster-growing method for the original network and the
skeleton of each real-world fractal network. For the WWW,
we find that both the original network and the skeleton ex-
hibit an exponential increase in average box mass with dis-
tance �C �Fig. 9�a��. Thus, the WWW is a small-world net-
work and the skeleton of the WWW is a supercritical
branching tree. For the metabolic network, while the original
network is small world with Eq. �11�, its skeleton appears to
follow a power law, Eq. �10� �Fig. 9�b��. Thus, the skeleton
of the metabolic network is better described by a critical
branching tree, although the original network is small world.
The difference between the metabolic network and its skel-
eton probably originates from the presence of core subnet-
works in the metabolic network, wherein the vertices are
tightly interwoven through multiple pathways but are simpli-
fied into a tree in the skeleton �31,34,35�. On the other hand,
for the protein interaction networks, both the original net-
works and the skeletons behave according to a power-law
form of Eq. �10�. Therefore, the protein interaction networks
are not likely to be small world and their skeletons can be
regarded as critical branching trees �Figs. 9�c� and 9�d��.

Next, we study the average box mass �MB��B�� in
the box-covering method. For the fractal networks and
their skeletons, the average mass �MB��B�� increases accord-
ing to a power law with respect to box size �B of Eq. �2�,
regardless of whether it is critical or supercritical in
the cluster-growing method as shown in Fig. 10. The
fractal dimensions measured using the formula �2� are
dB=4.10±0.12,3.53±0.12,2.24±0.10, and 2.03±0.05 for
the WWW �a�, metabolic network �b�, protein interaction
network of H. sapiens �c�, and S. cerevisiae �d�, respectively.
These values are comparable to the ones obtained from the
fractal scaling �1�, which are dB=4.10±0.12, 3.53±0.12,

FIG. 8. �Color online� Fractal scaling analysis �a� and �c�, and
mean branching number �b� and �d� for the fractal models generated
from a supercritical branching tree with �n�=2, dressed by short-
cuts. The data are for the bare supercritical tree ��� and dressed
networks with p=0.5 and q=0 ���, p=0.5 and q=0.01 ���, and
p=0 and q=0.05 ���. The solid lines in �a� and �c� are guidelines
with slopes of –4.2 each. The degree exponent is �=2.3 and system
size is N=1�105.
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2.28±0.11, and 2.01±0.15 for �a�, �b�, �c�, and �d�, respec-
tively. The results of the average box mass for the real-world
fractal networks are summarized in Table II. Nonfractal net-
works exhibit the exponential relationship

�MB��B�� � exp��B/�0� �12�

with a constant �0.
The different behaviors of the average mass in the two

methods, the cluster-growing and box-covering methods,
originate from whether overlap between the boxes is al-
lowed. Thus, studying the extent of overlap of the boxes
during the tiling can provide important information. In this
regard, we measure the cumulative fraction Fc�f� of vertices
counted f times or more in the cluster-growing method for
the WWW in Fig. 11. The cumulative fraction Fc�f� is likely
to follow a power law for small f , thereby indicating that the
overlaps occur in a non-negligible frequency even for a small
distance �C. The associated exponent decreases with increase
in box size �C as the chances of overlaps increase. However,
for large values of f , the large fraction of vertices counted

TABLE II. Behavior of the average box mass of the fractal
networks and their skeletons in the cluster-growing and box-
covering methods. * Due to finite-size effect, the characterization is
based on limited data.

Cluster-growing
method

Box-covering
method

World Wide Web Exponential Power law

World Wide Web �skeleton� Exponential Power law

Metabolic network* Exponential Power law

Metabolic network �skeleton�* Power law Power law

PIN of H. sapiens Power law Power law

PIN of H. sapiens �skeleton� Power law Power law

PIN of S. cerevisiae Power law Power law

PIN of S. cerevisiae �skeleton� Power law Power law

FIG. 9. �Color online� Average box mass �MC��C�� in the
cluster-growing method divided by the total number of vertices N,
as a function of the distance �C. Plots of �a� and �b� are drawn on a
semilogarithmic scale and those of �c� and �d� on a double-
logarithmic scale, respectively. Filled and open symbols represent
the original network and the skeleton of each network, respectively.
The solid lines for reference in �c� and �d� have slopes of 1.9 and
2.3, respectively.

FIG. 10. �Color online� Average box mass �MB��B�� divided by
the total number of vertices N, as a function of box size �B in the
box-covering method. Filled and open symbols represent the origi-
nal network and the skeleton of each network, respectively. The
solid lines �drawn for reference� have slopes of 4.10, 3.53, 2.24, and
2.03 for �a�, �b�, �c�, and �d�, respectively.

FIG. 11. �Color online� Cumulative fraction Fc�f� of the vertices
counted f times in the cluster-growing algorithm. Fc�f� follows a
power law in the small f region, where the slope depends on box
size �C. However, for large values of f , the data largely deviate
from the value extrapolated from the power-law behavior. Data are
presented for �C=2 ���, �C=3 ���, and �C=5 ���.

KIM et al. PHYSICAL REVIEW E 75, 016110 �2007�

016110-10



exceed the frequency extrapolated from the power-law be-
havior. As opposed to a bounded distribution such as a
Poisson-type distribution, the broad distribution of f implies
that a significant fraction of vertices are counted more than
once in the cluster-growing method. Such multiple counting
due to overlap is excluded in the box-covering method. Due
to this exclusion effect, the mass of a box in the box-
covering method is significantly lower than that in the
cluster-growing method.

We study the box mass distributions in the two methods.
As shown in Ref. �1�, for the WWW, the box mass distribu-
tion in the cluster-growing method exhibits a clear peak �Fig.
12�a��; on the other hand, in the box-covering method, it
exhibits a fat tail, following an asymptotic power law,

Pm�MB� � MB
−� �13�

�Fig. 12�b��. We find that the exponent � depends on the box
size �B. For small �B=1 or 2, it is found that � is equal to �;
however, as �B increases, � approaches the exponent � of the
cluster-size distribution �7�. This can be understood as fol-
lows. For small values of �B, the branching has not pro-
ceeded sufficiently to exhibit asymptotic behavior; thus, the
box mass will simply scale with the degree of the seed ver-
tex, which is selected randomly, yielding �=�. This is most
evident for �B=1. On the other hand, as �B increases, the box
grows and its size governs the scaling. The growth of the box
can be approximated by the SF branching tree with the ex-
ponent �, the size distribution of which follows a power law
with the exponent � given by Eq. �7�, yielding �=� for large
�B. The numerical estimates of � obtained from the WWW
are in reasonable agreement with the prediction as �=�
�2.3 for �B=2 and ��1.8 for �B=5 �Fig. 12�.

B. Fractal network model

Here, we perform a similar analysis of the average box
mass and the box mass distribution for the fractal network
model introduced in Sec. V. We first consider a network
model based on a critical branching tree with mean branch-
ing number �n�=1. For simplicity, we fix the parameters to
be �=2.3, N=3�105, and p=0.5, while varying parameter
q. When q is sufficiently small, i.e., q�0.001, the model
network exhibits a power-law scaling both in the cluster-
growing method Eq. �10� and the box-covering method Eq.
�2�. The network thus remains as a fractal. However, for
larger values of q like 0.01, the fractal scaling breaks down
and the average box mass increases exponentially as Eq. �11�
in both methods �Fig. 13�, i.e., the network becomes small
world.

The behavior of the average box mass of the fractal model
network based on the supercritical tree is interesting. Once a
supercritical tree is generated, the model network is dressed
by local shortcuts with p=0.5. Then it simultaneously exhib-
its both an exponential increase in box mass in the cluster-
growing method and a power-law increase in the box-
covering method, as observed in the WWW. This coexistence
persists when we introduce global shortcuts up to q=0.01
�Fig. 14�. If we further increase q, the average box mass
increases exponentially in both methods as the network loses
fractality. Thus, the model network with supercritical branch-
ing tree and an appropriate number of local shortcuts can
reproduce the small-world property of the average box mass
function as well as the fractality.

Next, we study the box mass distribution for the fractal
network model. We restart the analysis with the model net-
work based on the critical branching tree with parameters
�=2.3, N=3�105, and p=0.5. As with the real-world fractal
networks like the WWW, the box mass distribution for the

FIG. 12. �Color online� Box mass distribution
in the cluster-growing method �a� and box-
covering method �b� for the WWW. Data in �a�
are for �C=2 and those in �b� are for �B=2 ���
and �B=5 ���. The solid lines are guidelines with
slopes of −2.2 and −1.8, respectively.

FIG. 13. �Color online� Average box mass
versus box lateral size in the cluster-growing
method �a� and the box-covering method �b� for
the fractal network model constructed from a
critical branching tree, dressed by shortcuts with
p=0.5 and q=0 ��� and p=0.5 and q=0.01 ���.
Degree exponent is �=2.3 and system size is N
=3�105. Solid lines in �a� have slopes of 3.3 and
2.4, respectively, and the solid line in �b� has a
slope of 3.3.
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FIG. 14. �Color online� Average box mass as
a function of box size in the cluster-growing
method �a� and the box-covering method �b� for
the model network constructed from a supercriti-
cal branching tree, dressed by shortcuts with p
=0.5 and q=0 ��� and p=0.5 and q=0.01 ���.
Degree exponent is �=2.3, and system size N
=1�105. The solid line in �b� has a slope of 4.0,
which is drawn for guidance.

FIG. 15. �Color online� Box mass distribution
in the cluster-growing method �a� and box-
covering method �b� for the fractal model net-
work grown from a critical branching tree with
�=2.3 and dressed by shortcuts generated with
p=0.5 and q=0.001. The data in �b� are for �B

=2 ��� and �B=5 ���. Their slopes are –2.3 and
–1.8, respectively. The system size is N�3
�105.

FIG. 16. �Color online� �a� Average box mass
versus box size in the cluster-growing ��� and
box-covering ��� methods for a bare critical
branching tree with �=2.6. Solid lines, drawn for
guidance, have slopes of 2.3 ��� and 2.6 ���,
respectively. �b� Box mass distribution for the
bare tree of �a�. Solid guidelines have slopes of
–2.8 for �B=2 ���, –2.6 for �B=5 ���, and –1.6
for �B=32 ���.

FIG. 17. �Color online� Box mass distribution
in the cluster-growing method �a� and box-
covering method �b� for the fractal model net-
work grown from a supercritical branching tree
with �n�=2 and �=2.3, which is dressed by
shortcuts with the parameters p=0.5 and q=0.
The box size in �b� is �M =2 ��� and �M =5 ���.
Solid lines in �b� have slopes –2.3 and –1.8,
drawn for guidance. The system size is N�1
�105.
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model network exhibits a peak at a finite mass in the cluster-
growing method. The box mass distribution in the box-
covering method follows an asymptotic power law with ex-
ponent �. As observed for the WWW, we observe that the
exponent � depends on the box size. For q=0.001, it is found
that ��2.3 for small �B=2, and ��1.8 for large �B=5 �Fig.
15�. The latter value ��1.8 is in agreement with �=� / ��
−1��1.8 from Eq. �7�. Such �B-dependent behavior of the
box mass distribution can also be observed for another value
of �, for example, �=2.6 �Fig. 16�. In such cases, the behav-
ior �=� appears for large values of �B, for example, �B
=32 for �=2.6.

Next, when the model network is constructed based on a
supercritical branching tree �with �=2.3 and �n�=2� and is
dressed by shortcuts �with p=0.5 and q=0.001�, ��2.3 is
measured for �B=2, however, ��1.8 for �B=5 �Fig. 17�.
The obtained value ��1.8 is again in agreement with the
expected value ��1.8 for �=2.3.

VII. PERIMETER OF A BOX

The boundary of a fractal object is an important physical
quantity and is considered to be another fractal object. For
example, the area of the spin domain of the Ising model at
critical temperature, which corresponds to magnetization, is
a fractal object, and the interface length of the spin domain is
another fractal object, corresponding to the singular part of
internal energy �36�. Moreover, a percolation cluster is a
fractal object and its outer boundary, referred to as “hull,” is
also a fractal �37,38�.

We define the perimeter H� of a given box � as the num-
ber of edges connected on one end to the vertices within the
box � and on the other end to the vertices in other boxes.
The perimeter H� is examined as a function of the box mass
MB,� of the box �. Then, we can define the average perim-
eter �H�MB�� over the boxes with box mass MB. We find that
the following power-law relationship exists,

�H�MB�� � MB
dH/dB. �14�

The new exponent dH �the hull exponent for the fractal net-
work� is analogous to the one used in the percolation theory
�37,38�.

The power-law relation �14� is tested for the WWW and
the network model generated with �=2.3 and �n�=1. It ap-
pears that �H�MB�� depends on the box mass MB linearly,
i.e., dH /dB�1, irrespective of �B for the WWW �Fig. 18�a��;

however, it depends on �B weakly for the fractal network
model. For �B=2 and 3, dH /dB�1; however, for �B=5,
dH /dB is likely to be marginally smaller than 1 �Fig. 18�b��.
The linear behavior implies dH=dB, and is observed in the
connections between the percolation clusters near the critical
point for SF networks �39�.

VIII. CONCLUSIONS

Recently, it was shown that some SF networks exhibit
fractal scaling, NB��B���B

−dB, where NB��B� is the number of
boxes needed to tile the entire network with boxes of size �B.
In this paper, we have introduced a modified version of the
box-covering method, which makes implementation easy.
The origin of fractal scaling is understood from the perspec-
tive of criticality and supercriticality of the skeleton embed-
ded underneath each fractal SF network. By performing the
analysis of the average box mass as a function of the box size
for the box-covering and cluster-growing methods, and the
mean branching number as a function of the distance from
the root, we found that the skeleton of the WWW is a super-
critical branching tree, while the skeletons of other biological
networks such as the metabolic network of E. coli and the
protein interaction networks of H. sapiens and S. cerevisiae
are critical branching trees. Based on this observation, we
constructed the fractal network model. The box mass is het-
erogeneous and they exhibit a fat-tailed behavior, Pm�M�
�M−�. We found that the exponent � depends on the lateral
size �B of the box. When �B is small, � is equal to the degree
exponent �; on the other hand, as �B increases, � approaches
the exponent �=� / ��−1� for the cluster-size distribution of
the branching tree; this can be predicted from the skeleton.
Finally, we studied the number of edges that interconnect a
given box and other boxes, forming the perimeter of a box,
as a function of the box mass. It appears that the perimeter
depends on the box mass linearly, and the perimeter expo-
nent is equal to the fractal dimension.
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FIG. 18. �Color online� Plot of the average
perimeter �H�MB�� versus box mass MB for the
WWW �a� and the model network with the pa-
rameters of �=2.3, p=0.5, and q=0.0 �b�. Data
are for box sizes �B=2 ���, �B=3 ���, �B=5
���. The solid line �drawn as reference� has a
slope of 1.0 for both �a� and �b�.
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